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Abstract

We consider representation learning (hypothesis classH = F ◦ G) where training
and test distributions can be different. Recent studies provide hints and failure
examples for domain invariant representation learning, a common approach for this
problem, but the explanations provided are somewhat different and do not provide
a unified picture. In this paper, we provide new decompositions of risk which
give finer-grained explanations and clarify potential generalization issues. For
Single-Source Domain Adaptation, we give an exact decomposition (an equality)
of the target risk, via a natural hybrid argument, as sum of three factors: (1)
source risk, (2) representation conditional label divergence, and (3) representation
covariate shift. We derive a similar decomposition for the Multi-Source case.
These decompositions reveal factors (2) and (3) as the precise reasons for failure to
generalize. For example, we demonstrate that domain adversarial neural networks
(DANN) attempt to regularize for (3) but miss (2), while a recent technique Invariant
Risk Minimization (IRM) attempts to account for (2) but does not consider (3). We
also verify our observations experimentally.

1 Introduction

Representation learning has emerged as a promising approach for machine learning in domain
adaptation [5, 12] (for a more recent analysis of this line, see [14] and references therein). A common
setup is to consider a hypothesis classH that can be decomposed into F ◦G, where F is a class of
predictors which map representations to predictions1, and G is a class of representations which map
inputs to representations. Compared to using a monolithic hypothesis class, using representations
provides a new level of abstraction to study properties of information useful for adapting to different
domains [6], including computer vision [26, 10] and natural language processing [9, 23].

A theme of representational domain adaptation is to derive a risk decomposition that involves
representations, and use it to guide the search of desired representations. For example, a popular
decomposition in single-source case is Domain Invariant Representations (DANN [12]):

Rt( f ◦ φ) ≤ Rs( f ◦ φ) + d(Φs,Φt) + λ?
H

(1)
which says that target risk is bounded by three factors: (1) source risk, (2) distance between set of
feature representations Φs and Φt, and (3) a term λ?

H
that solely depends on the overall hypothesis

classH (and thus is regarded as unlearnable).

However, recent work [14, 29, 2] has pointed out that the term λ?
H

hides information about different
choices of representations, and thus may not be informative about the failure cases of domain invariant

1In this work, we assume that the predictors output a probability vector over the labels, which corresponds to
the output of softmax layer in typical classifiers, including deep neural networks.
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representations. These works proposed failure examples and possible explanations (e.g., [14] proposed
an explanation based on support misalignment). However, to some extent, these explanations are
different from each other and do not give a unified picture.

In this paper we take a step to bridge this gap. We derive new risk decompositions that are more
fine-grained and can clarify failure examples as precise terms in the decompositions. Our key idea is
that since representation class G provides an intermediate abstraction, it is fundamental to understand
the following question: What information does φ ∈ G elicit for domain adaptation?

1.1 Overview of our theory and results

As a first step to answer the question, we propose to examine the target risk where we equip over φ
its Bayesian optimal predictor, and derive fine-grained risk decompositions. Our risk bounds show
that explicitly incorporating representations can provide novel implications, and open an avenue for
designing future algorithms for representation learning in domain adaptation. Our results can be
broadly categorized into single-source and multi-source cases.

Single-Source Domain Adaptation (SSDA). We obtain the following results.

• We derive an exact decomposition (an equality) of the target risk, based on a natural hybrid
argument, as three terms: (1) source risk, (2) representation conditional label divergence,
and (3) representation covariate shift. We further give an exact decomposition of (3),
based on Lebesgue decomposition, into (4) representation absolute continuous risk, and (5)
representation singular risk.

• This equality allows us to identify a weakness of the invariant reprentation approach (DANN)
as mixing the effects of absolute continuous risk and singular risk, and may give inferior
results due to intrinsic representation covariate shift. It also allows us to explain failure
examples as found in [14, 29] as exactly a large conditional divergence (factor (2)), and is
information-theoretically impossible to solve without labeled data from the target distribu-
tion. This indicates that domain invariant representation approach (e.g. DANN) attempts to
regularize (3) but misses (2), and there is a fundamental limitation of Single-Source Domain
Adaptation with only unlabeled data from the target domain.

• We also analyze the success of DANN for MNIST→MNIST-M2 for which, similar to the
failure example, the input support of two domains is disjoint. Our theory again gives an
immediate explanation of this success: The perfect representation alignment (i.e. factor (3)
= 0) in this case trivially implies perfect conditional label alignment (i.e. factor (2) = 0).

Multi-Source Domain Adaptation (MSDA). We obtain the following results.

• Multiple training distributions allow us to observe conditional label divergence. We derive a
risk decomposition that target risk is bounded by conditional label divergence and covariate
shift in the training domains, plus a term called predictor adaptation distance quantifying
whether these alignments in the source domains can generalize to the test domain.

• Our decomposition reveals that IRM [2] considers exactly perfect conditional label alignment
(factor (2)), but misses representation covariate shift (factor (3)), and thus its performance
may be hurt due to that, which is verified in our experiments (Figure 4). We further note
that generalization to the target can fail when the predictor adaptation distance is large. We
demonstrate this via an “distribution memorization problem” (Prop 1 and Section B.3).

Finally, we perform experiments to confirm our theoretical observations.

2 Preliminaries

Domain adaptation. Single-source domain adaptation has a source domain s and a target domain t.
Each domain is a distribution over a set of feature vectors and labels. In the multi-source case, we
have a set of source domains Etr, and one target domain e0 for testing. Given a representation φ, we
use Φe to denote the random vector φ(Xe) where Xe is the random variable distributed according to
the input feature distribution in the environment e.

2 Recall that MNIST-M is created by replacing the background of MNIST with colored images.
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Cross entropy function and cross entropy loss. For simplicity of developing and presenting results,
throughout this paper we will work with cross entropy loss. However, our results can be extended
in a straightforward way to other loss functions. Given two distribution p, q, cross entropy function
Hp(q) is defined as Hp(q) =

∑
i qi log 1

pi
. We also use cross entropy loss function where for a label

y ∈ [K], and a probability vector p ∈ ∆K , `(p, y) = Hp(1y) = log 1
py
, where 1y is a K-dimensional

vector with y-th component 1, and 0 otherwise. Given an environment e with distribution Xe,Ye, and
a hypothesis h ∈ F ◦G, we define its population risk over e, Re(h) as E[`(h(Xe),Ye)].

Representation Bayesian optimal predictors. Given φ ∈ G, we denote by f e
φ the Bayesian optimal

predictor on top of the representation φ(Xe) in environment e. That is, f e
φ (γ) outputs a probability

vector such that for y ∈ [K], [ f e
φ (γ)]y = Pr[Ye = y| φ(Xe) = γ]. In other words, f e

φ (γ) = (Ye| φ(Xe) =

γ), the label distribution conditioned on φ(Xe) = γ. To simplify notation, we simply use Ye| γe.

3 Single-Source Domain Adaptation

Motivated by the central question (“What information does a representation elicit?”), we propose to
examine the risk where we equip over φ its Bayesian optimal predictor.

3.1 An Exact Decomposition of Single-Source Representation Risk

The first step of our single-source decomposition is a hybrid argumment based on a natural hybrid
called s-t mixture. This hybrid distribution retains the same representation distribution as that of the
target, but switches the label distribution conditioned on a representation to that of the source.

Definition 1 (s-t Mixture). An s-t mixture, denoted as (Φm,Ym), is a distribution defined on the
Ω × [K] (representation support times label space) as follows: (1) Φm and Φt = φ(Xt) have the
same distribution. That is the feature distribution follows the target domain. (2) On the other hand,
Ym| γm = Y s| γs. That is, the conditional label distribution follows the source domain.

This mixture gives rise to some natural quantities for risk decomposition. We first consider repre-
sentation conditional label divergence. Given a representation φ, and a value γ that φ may take, the
conditional label distributions Y t | γt and Y s| γs may differ. We introduce two notions,

Definition 2 (Representation Domain KL-Divergence). We define (representation) domain KL-
divergence as KLs,t

φ :=
∫

Ω
dKL

(
f t
φ(γ) ‖ f s

φ (γ)
)
µt(dγ). where dKL is the KL divergence. Importantly,

this quantity is natural since it is exactly Rt( f s
φ ◦ φ) − Rt( f t

φ ◦ φ): The gap of target risk if we switch
predictor from f t

φ (target optimal) to f s
φ (source optimal).

Definition 3 (Representation Domain Bayesian Divergence). We define (representation) domain
Bayesian divergence as δs,t

φ :=
∫

Ω

(
H(Y t | γt) − H(Y s| γs)

)
µt(dγ). Importantly, this quantity is natural

since it is exactly Rt( f t
φ ◦ φ) − Rm( f s

φ ◦ φ): The gap between the risks on the target and mixture
distribution (recall that target and mixture share the same representation distributions; f t

φ is optimal
for the target, and f s

φ is optimal for the mixture).

We refer readers to [24] for a detailed study of the relationship between the two notions above.
Symmetrically, we can consider fixing the conditional label distributions, but vary the underlying
representation distribution. This gives representation covariate shift:

Definition 4 (Representation Covariate Shift). We define s-t representation covariate shift, denoted
as µs,t

φ , as µs,t
φ =

∫
Ω

H(Y s| γs)µt(dγ) −
∫

Ω
H(Y s| γs)µs(dγ). In other words, we consider representation

distribution changing from Φs to Φt, while fixing conditional label distribution as Y s| γs.

Lemma 1 (Exact decomposition into conditional divergence and covariate shift). We have that

Rt( f s
φ ◦ φ) = Rs

(
f s
φ ◦ φ

)︸      ︷︷      ︸
source error

+ KLs,t
φ + δs,t

φ︸       ︷︷       ︸
conditional label div

+ µs,t
φ︸︷︷︸

covariate shift

(2)

We next give an exact decomposition of the representation covariate shift µs,t
φ . By the Lebesgue

decomposition theorem [25], we know that µt = µt
0 + µt

1 where µt
0 � µs is a measure that is
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absolutely continuous in µs and µt
1 is a measure that is singular in µs. This decomposition has a

natural interpretation in view of domain adaptation: µt
0 represents the target representations that can

be observed in µs, wheras µt
1 represents the target representations that cannot be observed via µs. For

µt
0, by the Radon-Nykodym theorem, we have then a function ωφ(·) ≡ dµt

0
dµs : Rk 7→ R, so that for any

measurable set B: µt
0(B) =

∫
B ωφ(γ)dµs(γ). We thus introduce two notions.

Definition 5 (Representation Singular Risk). Let τs,t
φ ≡ τ

s,t
φ (µt

1) ≡
∫

Ω
H(Y s| γs)µt

1(dγ).

Definition 6 (Representation Absolute Continuous Risk). Let

ζ s,t
φ ≡ ζ

s,t
φ (µt

0) ≡
∫

Ω

(
ωφ(γ) − 1

)
H(Y s| γs)µs(dγ)

Lemma 2 (Exact decomposition of representation covariate shift). µs,t
φ = ζ s,t

φ + τs,t
φ .

Combining the above two lemmas we thus arrive at the main theorem for the single-source case:
Theorem 1 (Exact Decomposition of Single-Source Risk). We have that

Rt( f s
φ ◦ φ) = Rs

(
f s
φ ◦ φ

)︸      ︷︷      ︸
source error

+ KLs,t
φ + δs,t

φ︸       ︷︷       ︸
conditional label div

+ ζ s,t
φ︸︷︷︸

absolute continuous risk

+ τs,t
φ︸︷︷︸

singular risk

(3)

3.2 Comparison with existing risk decompositions

DANN and intrinsic representation covariate shift. One can contrast DANN decomposition (1)
with our fine-grained decomposition, in particular (2). One can see that for common distribution
distance function d(·, ·) (e.g., MMD), d(Φs,Φt) mixes the effect of absolute continuous risk and
singular risk. More precisely, even if the singular part becomes zero for a “right” representation, there
might be nontrivial absolute continuous risk because there is intrinsic covariate shift from µs to µt

0.
In this situation, even if we discover the right representation φ, d(Φs,Φt) may still be significant and
DANN may excessively modify φ in order to reduce d(Φs,Φt), leading to adverse results.

In fact, some recent proposals (for example, [16]) made similar observations, and they considered
modifying (1) to align the conditional representation distributions, Φs|Y s and Φt |Y t, instead of Φs and
Φt. However, in view of our results, this is only one form of intrinsic covariate shift, and one can
easily modify the representation distributions to break these variants.

Comparison with other bounds. We now consider other representative decompositions, specifically:
(T1) Theorem 1 [4], (T2) Theorem 4.1 [29], and (T3) Theorem 2 [14]. More related work are discussed
in Sections E and F. To begin with, the Bayes classifier and our other notions (Def 2 to 4) are defined
w.r.t. the representation. For both (T1) and (T2), the notions are w.r.t. the input space (e.g., “Notations”
and “Comparison with Theorem 2.1” in [29]). Working at representation level allows us to examine
different representation conditional distributions in a hypothesis class of representations. (T1) and
(T2) do not formulate representation class. Our bound is tighter even if one applies (T1) and (T2) at
the representation level. This is because an equality implies that our terms must be reflected in any
valid upper bound, but still, an equality can provide more thorough insights. For (T1), we provide
a detailed comparison in Appendix F. The insufficiency of (T1) has also been discussed in several
existing works (including [29, 14]).

For (T2), we note two more points: (i) Our decomposition is an “orthogonal decomposition” but
(T2) is not. Specifically, our conditional label divergence terms (Def 2 and 3) are not affected by
representation covariate shift since both integrals are only evaluated over the target representation
distribution. By contrast, while the third term in (T2) is related to conditional label divergence,
it depends on both source and target representation distributions, and so mixes conditional label
divergence and covariate shift. (ii) While the second term in (T2) can be interpreted as covariate shift
over representations, our term provides a precise characterization of the effect of absolute continuous
and singular risks, unveiling a weakness of DANN.

(T3) is the closest decomposition to ours. However their decomposition is not exact and indeed upper
bounds our absolute continuous risk and singular risk. This again demonstrates the benefits of our
equality decomposition.

Controlling covariate shift via source fairness. In Section A.3 we derive an upper bound of the
representation covariate shift that has algorithmic implications. In that upper bound we consider a
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notion called representation source fairness, which encourages to find a representation φ that has
uniform performance across different representations γ. The notion only depends on the source
domain, and can thus be learned with labeled source data. We note that this notion generalizes a
similar theme considered in recent work [11] to the representation level.

3.3 Analysis of examples of domain invariant representations

We now use our theory to analyze two examples of Domain Invariant Representations.
Example 1 (A failure example from [14, 29]). Consider input space X = [−1, 1] × [−1, 1], G =
{φ1, φ2} where φ1(x) = x1 and φ2(x) = x2, and F = {1λ(·)} (that is we consider thresholding functions
that 1λ(α) = 1 if α > λ, and 0 otherwise. The source domain s puts a uniform distribution in the
second and fourth quadrants, and has label 1 in the second quadrant, and label 0 in the fourth
quadrant. On the other hand, target distribution t puts a uniform distribution in the first and third
quadrant, and has label 1 in the first quadrant and label 0 in the third quadrant (See Figure 1).
Clearly, the underlying truth is φ2(x) = x2, which perfectly classifies both source and target data.
However, with only unlabeled data from the target domain, using (1) we cannot distinguish between φ1
and φ2: Both of them have zero risk on the source domain, and both give perfect alignment between
Φs and Φt. (i.e., both perfectly minimize (1)).

××

1

1 𝑌 = 1
Target
Source

× × ×
× ×

× × ×
× ×

× × ×
× ×

× × ×
× ×

×

𝑌 = 0

×

1

1

𝜙' 𝑋 = 𝑋(2)

𝜙, 𝑋 = 𝑋(1)

× × ×
× ××

××

𝑥(2)

𝑥(1)

×

Figure 1: Example from [14]
where DANN fails to learn. (1)
has two different source-optimal
solutions with different target
risks. The figure is from [14].

Figure 2: The source do-
main is the same, but the tar-
get domain has x1 = 0.

Our explanation using conditional label divergence. Theorem 1 provides an immediate explana-
tion for Example 1: φ1 has a large representation conditional label divergence. Since we only have
one source domain, and do not have labeled data from the target domain, it is information theoretically
impossible to align conditional label distributions, and thus distinguish between φ1 and φ2. We note
that [29] mentioned a similar explanation based on their Theorem 4.1. As we have discussed in the
previous section, our exact decomposition at representation level provides a more precise explanation
(zero representation covariate shift but large conditional label divergence).
Example 2 ( An example on which DANN succeeds). We consider the same setting as in Example 1.
However, for target domain, we have uniform distribution over {0} × [−1, 1], and for {(0, x2) | 0 <
x2 < 1} we give label 1, and for {(0, x2) | − 1 < x2 < 0} we give label 0. In other words, the
probability mass, instead of spreading over the second and the fourth quadrants, it concentrates on
the x2 axis. In this case, only φ2(x) = x2 aligns the representation distributions, since φ1(x) = x1 will
be constantly 0 for the unlabeled data from the target domain, which has measure 0 in the source
data when projecting to x1. DANN will thus learn x2 which perfectly classifies the target data.

The success of DANN on MNIST→MNIST-M. The example above captures the essence of the
success of DANN on MNIST→MNIST-M: The representation alignment in this case trivially implies
conditional label alignment. Merely replacing background images will make digit representation
the only discriminative signal that exists in both source and target. Therefore by finding the only
representaiton that could align the two domains, the conditional label alignment is trivially implied.

4 Multi-Source Domain Adaptation

We now switch to the setting with multiple sources. Multiple source domains allow us to observe
conditional label divergence among source domains, which one cannot hope to do with a single
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source (without labeled target data). Due to the availability of multiple source domains, we focus on
the case where no data (labeled or unlabeled) from the target domain is available for training.

4.1 Multi-Source Representation Risk Decomposition

We observe that, even with multiple source domains, generalization to a target domain requires
connections between the target and sources. For this we introduce Predictor Adaptation Gap.
Definition 7 (Predictor adaption gap between two distributions). Define the predictor adaptation
gap between two distributions e1 and e2 with respect to a representation function φ and Etr as
dφ(e1, e2;Etr) ≡ supe∈Etr

Re1 ( f e
φ ◦ φ) − Re2 ( f e

φ ◦ φ). Intuitively, a small gap indicates that a small
Re2 ( f e

φ ◦ φ) implies small Re1 ( f e
φ ◦ φ). That is, f e

φ ◦ φ can be used in e1.
Definition 8 (Predictor adaptation gap between target and sources). Define the predictor adapta-
tion gap between e0 and Etr with respect to φ as: dφ(e0,Etr) ≡ infe′∈Etr dφ(e0, e′;Etr).We also define the
predictor adaptation gap between e0 and Etr over the whole class G as dG(e0,Etr) ≡ supφ∈G dφ(e0,Etr).
Theorem 2 (Multi-Source Risk Decomposition). For any φ, we have

sup
e∈Etr

Re0 ( f e
φ ◦ φ) ≤ sup

e∈Etr

Re( f e
φ ◦ φ)︸           ︷︷           ︸

source error

+ sup
e,e′∈Etr

[δe,e′
φ + KLe,e′

φ + µe,e′
φ ]︸                            ︷︷                            ︸

cond. label div. + covariate shift

+ dφ(e0,Etr).︸      ︷︷      ︸
predictor adaptation gap

(4)

Compared with Theorem 1, Theorem 2 has an additional term of predictor adaptation gap. This is
intentional since the predictor gap is related to the target and thus cannot be optimized in the setting
without target data. Importantly, this bound shows a trade-off between the generalization gap and
the other two terms: A larger Etr may lead to a smaller gap but larger source risks, larger label
divergence and covariate shift among the sources, and harder optimization. Similarly, the bound
also shows a larger hypothesis class G potentially leads to smaller source risks but a larger gap. To
see this, suppose the optimization method successfully finds a φ̂ with small source risks, and small
conditional label divergence and covariate shift among the sources. Then, the generalization gap is
dφ̂(e0,Etr), which can be as large as supφ∈G dφ(e0,Etr) in the worst case.

4.2 Conditional Label Divergence and Invariant Risk Minimization

We consider the following notion for regularizing conditional divergence.
Definition 9 (Environment Conditional Invariance). A representation φ satisfies environment
conditional invariance (ECI) w.r.t. distribution family E if ∀e, e′ ∈ E, ∀r ∈ supp(φ(Xe))∩supp(φ(Xe′ )),
∀y ∈ [K], Pr[Ye = y | φ(Xe) = r] = Pr[Ye′ = y | φ(Xe′ ) = r].

ECI means that the Bayesian optimal prediction function on the representation (i.e., Pr[Ye|φ(Xe)]) is
invariant across all the distributions. This notion is closely related to the notion of invariant prediction
in [22], and has been mentioned in recent work (e.g., [20]). Furthermore, a recent work [2] of Invariant
Risk Minimization (IRM) has proposed and studied a closely related notion that representation φ
leads to the existence of a predictor simultaneously optimal for all the domains:

min
h∈F , φ∈G

∑
e∈Etr

Re(h ◦ φ),

subject to h ∈ arg min
h∈F

Re(h ◦ φ) for ∀e ∈ Etr.
(5)

ECI and IRM are not equivalent if the loss (e.g., 0-1 loss) does not have the property that the minimizer
is the Bayesian optimal predictor.3 If the loss function satisfies the Bayesian optimality property, and
the hypothesis class F contains the Bayes perdictor of representations, ECI and IRM are equivalent.
In this case, let GI denote the subset of hypotheses in G that satisfy ECI. Then IRM is equivalent to
minimizing

∑
e∈Etr

Re(h ◦ φ) subject to h ∈ F , φ ∈ GI . By Theorem 2, the solution ĥ ◦ φ̂ satisfies

Re0 (ĥ ◦ φ̂) ≤ sup
e∈Etr

Re(ĥ ◦ φ̂) + sup
e,e′∈Etr

µe,e′

φ̂
+ dGI (e0,Etr). (6)

Compared to the original bound, ECI enforces perfect conditional label alignment, and also potentially
reduces the generalization gap from dG(e0,Etr) to dGI (e0,Etr) by pruning away those hypothesis φ
that do not satisfy ECI on the sources. When the ground-truth indeed satisfies ECI, this will not hurt
the sources risks and thus significantly decreases the bound on the target risk.

3 See Section C for a detailed discussion. Therefore, we use ECI for our analysis, since it is a property of the
representation itself and does not involve the optimization and thus is more convenient for the analysis.
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4.3 Predictor Adaptation Gap

In this section we study the problem of distribution memorization that may lead to a large predictor
adaption gap. Distribution memorization is similar to overfitting via memorizing training samples in
the traditional supervised learning setting, but it memorizes the entire distributions rather than the
training samples. Even if infinite data from each source is available and the hypothesis classes are just
slightly larger than necessary, distribution memorization can happen. To illustrate this, we consider
the following example: Consider the case with classification error, i.e., the label is in {−1,+1} and the
loss of f on data (x, y) is `( f (x), y) = |sign( f (x)) − y|. Suppose the support of the target supp(Xe0 )
can be disjoint from those of the sources ∪e∈Etr supp(Xe). Assume: (1) There are ground-truth φ∗ ∈ G
and f ∗ ∈ F , such that f ∗ ◦ φ∗ has 0 error in all domains (including all sources and also the target),
φ∗ satisfies ECI in all domains, and the distributions of φ∗(Xe) are the same for all sources e. (2)
The optimization finds f and φ such that in all sources, f ◦ φ has 0 error, φ satisfies ECI, and the
distributions of φ(Xe) are the same.

Proposition 1 (Distribution Memorization). There exists an instance of the data distributions and
G ◦ F satisfying the above assumptions, where there is an optimal solution f ◦ φ that satisfies ECI
and has 0 risks in all the source domains, but in the target domain has a risk 1/2 which is as large as
random guessing. Furthermore, in the instance, φ(x) is simply the concatenation of φ∗(x) with one
additional bit, and f is linear.

Intuitively, the representation remembers whether the data is from the target and then the predictor
uses this to make different predictions for the target domain. More generally, we do not need the
support of the target domain to be disjoint from those of the source domains. A similar phenomena
can happen when the target has large total variation distances with the sources and the hypothesis
classes are too large.4 Our analysis shows that the representation class should be carefully chosen to
alleviate the prediction adaptation gap and consequently get better generalization to the target domain.
The connection between the prediction adaptation gap and the label divergence and covariate shift
(between target and sources) also suggests that if some (unlabeled) data from the target domain are
available, such data can potentially be used to regularize the gap explicitly during the training.

5 Experiments

In this section we perform experiments to verify our theoretical observations.

SSDA: Representation covariate shift. We demonstrate two points: (1) Without considering
representation covariate shift, DANN performance will deteriorate with more significant covariate
shift. (2) More importantly, we demonstrate a novel point inspired by our theory that, if we “reweigh”
the points according to the covaraite shift (i.e., we have an oracle which tells us the representation
covariate shift for the right representation), then DANN works again.

To do so, we follow the MNIST → MNIST-M domain adaptation scenario from [12]. To induce
representation covariate shift, the data in the target domain are skewly sampled for each class
according to a weight vector w. w is set as follows: (1) Mild covariate shift case: ω[i] = 0.25 if
i = 0, ω[i] = 9 if i = 9, and otherwise ω[i] ∼ Uniform([.25, .75]). (2) Strong covariate shift case:
ω[i] = 0.0625 if i = 0, ω[i] = 0.9375] if i = 9, and otherwise ω[i] ∼ Uniform([.0625, .9375]).

Figure 3 confirms the gap in the target accuracy between naive application of DANN and DANN with
oracle source sampling is significant: It increases with the effect of representation covariate, which
is measured by the maximum relative weight ratio in our case. This gap confirms our theoretical
observation that DANN objectives mix the effect of absolute continous and singular risks, which can
result in inferior performance. This also suggests that the design of domain adaptation algorithms
may need to consider separating the effect of absolute contious and singular risks.

MSDA: IRM and source-target representation covariate shift. Our analysis indicates a large
representation distribution shift can lead to larger target risks, and only enforcing ECI will not
suffice. Here we provide supporting empirical evidence, by experimenting on a variant of the colored
MNIST dataset from [2]. In the original construction, we have equal mass on the digits in both source

4 Section B.3 provides a more complex example where the supports of the target and the sources overlap but
a large representation covariate shift leads to a large gap. It also provides another example where the supports
overlap while a large conditional label divergence leads to a large gap.
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Figure 3: Source and Target accuracy for DANN under mild (Left) and strong covariate shift (right).
In each scenario, we compare three cases: no covariate shift (baseline), covariate shift with naive
DANN, covariate shift with DANN under oracle sampling for the source domain
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Figure 5: Training and test accuracy of IRMv1v.s. epochs. Left: one-
stage, use the regularization to impose ECI for the whole training.
Right: two-stage, first train without the regularization for 190 steps
and then use regularization. One can see that the two stage training
significantly improves the test accuracy.

domains, so there is no representation covariate shift. We modify the construction process so that the
two source domains have misaligned distributions over the digits: e1 has mass p

1+p on digits 0-4 and
1

1+p on digits 5-9, while e2 has mass 1
1+p on digits 0-4 and p

1+p on digits 5-9. So the shift is controlled
by a single control parameter p, as p increases the shift becomes larger. Figure 4 shows the results
where p increases the test accuracy continues to decrease.5 The result confirms our observation that
as the representation covariate shift becomes more significant, models learned on the source domains
have worse generalization to the test domain.

MSDA: IRM, hypothesis class size, and predictor adaptation gap. [2] proposed an algorithm
called IRMv1 for IRM. We observe that, IRMv1 fails to generalize on Color-MNIST when imposing
the ECI regularization for the whole training process. On the other hand, a two-stage training
succeeds: First we train without regularization, and then train with the regularization. Figure 5 gives
the learning curves for these two training methods. For this interesting observation, our multi-source
theory provides an explanation that, essentially, the first stage is a pretraining which gives a smaller
hypothesis class that may have smaller predictor adaption gap. More precisely, the first stage begins
with an initialization φ0 and finds an intermediate solution φ1, and the second stage uses φ1 as a warm
start and searches in a neighborhood N(φ1) of φ1 to obtain the final solution φ2. Here, N(φ1) can
be much smaller than the original hypothesis class GI . Then the predictor adaptation gap reduces
from dGI (e0,Etr) to dN(φ1)(e0,Etr), and thus improves generalization. We confirmed this explanation
empirically. We computed the `2 distance between the parameters of φ0 and φ1, and for φ1 and φ2.
The latter is less than 8% of the former, suggesting that it is indeed doing pre-training and supporting
our explanation. This also suggests that the two-stage training heuristic can be a general strategy to
improve generalization in domain adaptation.

5 The exact data generating process and results are provided in Appendix D and Table 1.
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6 Broader Impact

This paper is purely theoretical and has no immediate societal impact. It may lead to the development
of better domain adaptation algorithms, which may have practical impact.
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A Proofs for Section 3

A.1 Proof of Lemma 1

We decompose Rt( f s
φ ◦ φ) − Rs( f s

φ ◦ φ) as

Rt( f s
φ ◦ φ) − Rs( f s

φ ◦ φ) =
(
Rt( f s

φ ◦ φ) − Rt( f t
φ ◦ φ)

)
+

(
Rt( f t

φ ◦ φ) − Rm( f s
φ ◦ φ)

)
+

(
Rm( f s

φ ◦ φ) − Rs( f s
φ ◦ φ)

)
.

One can then verify that Rt( f s
φ ◦ φ) − Rt( f t

φ ◦ φ) = KLs,t
φ , Rt( f t

φ ◦ φ) − Rm( f s
φ ◦ φ) = δs,t

φ , Rm( f s
φ ◦ φ) −

Rs( f s
φ ◦ φ) = µs,t

φ .

A.2 Proof of Lemma 2

Note that µs,t
φ =

∫
Ω

H(Y s| γs)µt(dγ)−
∫

Ω
H(Y s| γs)µs(dγ) =

∫
Ω

H(Y s| γs)µt
0(dγ)−

∫
Ω

H(Y s| γs)µs(dγ)+τφ.

Further,
∫

Ω
H(Y s| γs)µt

0(dγ) −
∫

Ω
H(Y s| γs)µs(dγ) =

∫
Ω

(
ωφ(γ) − 1

)
H(Y s| γs)µs(dγ) = ζφ

A.3 Upper Bounding Representation Covariate Shift via Source Fairness

In this section we study a bound on the representation covariate shift µs,t
φ that has algorithmic

implications. For ease of notations we assume that there is no the singular part, but the argument here
can be easily extended to the situation with nontrivial singular part.

Point Fairness. We consider the following definition:

Definition 10 (Representation Source Fairness). The representation source fairness ρs
φ is defined

as ρs
φ ≡ supγ∈Ω

{
H(Y s| γs)

}
.

Source fairness quantifies the intrinsic difficulties of φ in discriminating certain inputs (that is, even
the Bayesian optimal predictor over φ cannot discriminate the inputs mapped to γ well). Intuitively, if
φ is good at discriminating some inputs, but very bad at some others, then φ is unfair to those inputs
(even though they may only occur with very small probability).

We note that, importantly, this quantity only depends on the source domain, and so it is learnable
using labeled source data. Finally, observe that ρs

φ ≤ log K, where the maximal is achieved when
Y s| γ is a uniform distribution over [K]. This leads to the following bound on covariate shift.

Theorem 3.

µs,t
φ ≤ ρs

φ︸︷︷︸
repr. source fairness

× dTV(Φs,Φt)︸        ︷︷        ︸
repr. divergence

Proof. Note that κ(γ) := H(Y s| γs)/ρs
φ is a function bounded by 1, and µs,t

φ is indeed ρs
φ ·(∫

Ω
κ(γ)µt(dγ) −

∫
Ω
κ(γ)µs(dγ)

)
, which is bounded by ρs

φ · dTV(Φs,Φt) where dTV(Φs,Φt) is the total
variation distance between Φs and Φt. �

Group Fairness. We can tighten the previous bound based on grouo fairness instead of point-wise
fairness. Let B be a partition of the space of the representation φ. Assume for simplicity |B| is finite.

Definition 11 (Group Representation Source Fairness). The group (representation) source fair-
ness ρs

φ,B
with respect to B is defined as ρs

φ,B
:= supB∈B′

{
H(Y s|Φs ∈ B)

}
, where B′ = {B ∈ B : Pr[Φs ∈

B] > 0}..

Definition 12 (Group Distance). The group distance between two distributions µ and ν with respect
to B is defined as dB(µ, ν) = 1

2
∑

B∈B |µ(B) − ν(B)|.
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Theorem 4. Suppose Φt is supported on Φs, i.e., if Pr[Φt ∈ B] > 0 for some set B, then Pr[Φs ∈ B] >
0. Then we have

µs,t
φ ≤ ρ

s
φ,B × dB(Φs,Φt)

≤ ρs
φ × dTV(Φs,Φt)

≤ log K × dTV(Φs,Φt).

Proof. We have

µs,t
φ =

∫
Ω

H(Y s|γs)µt(dγ) −
∫

Ω

H(Y s|γs)µs(dγ)

=
∑
B∈B′

Pr[Φt ∈ B]H(Y s|Φs ∈ B) −
∑
B∈B′

Pr[Φs ∈ B]H(Y s|Φs ∈ B)

=
∑
B∈B′

(
Pr[Φt ∈ B] − Pr[Φs ∈ B]

)
H(Y s|Φs ∈ B)

≤
∑
B∈B′

max
{
0,Pr[Φt ∈ B] − Pr[Φs ∈ B]

}
H(Y s|Φs ∈ B)

≤ sup
B∈B′

H(Y s|Φs ∈ B) ×
∑
B∈B′

max
{
0,Pr[Φt ∈ B] − Pr[Φs ∈ B]

}
= sup

B∈B′
H(Y s|Φs ∈ B) ×

1
2

∑
B∈B′
|Pr[Φt ∈ B] − Pr[Φs ∈ B]|

≤ ρs
φ,B × dB(Φs,Φt).

Clearly, ρs
φ,B
≤ ρs

φ. Let U(B) be the family of sets that can be obtained by taking union of some sets
in B:

U(B) = {U : U = ∪B∈AB,A ⊆ B}.
Then dB(µ, ν) = supU∈U(B) |µ(U) − ν(U)| ≤ dTV(µ, ν), where the last inequality follows from the
definition of total variation distance. So the statement follows. �

Algorithmic Implications. Note that both the point source fairness and group source fairness depend
only on the source domain, and therefore one can hope to learn using labeled source data. Our
results thus show that by encouraging fairness, that is, the accuracy being robust to change of source
distributions, one can generalize better in view of covariate shift in domain adaptation problems.
In fact, similar themes have been explored in some recent work, such as [11] (but which is not at
representation level).

B Proofs in Section 4

B.1 Proof of Theorem 2

For any e ∈ Etr,

Re0 ( f e
φ ◦ φ) − Re( f e

φ ◦ φ)

= inf
e′∈Etr

[Re0 ( f e
φ ◦ φ) − Re′ ( f e

φ ◦ φ) + Re′ ( f e
φ ◦ φ) − Re( f e

φ ◦ φ)]

≤ inf
e′∈Etr

[Re0 ( f e
φ ◦ φ) − Re′ ( f e

φ ◦ φ)] + sup
e′∈Etr

[Re′ ( f e
φ ◦ φ) − Re( f e

φ ◦ φ)].

Therefore, taking supe∈Etr
on both sides and applying the max-min inequality leads to

sup
e∈Etr

Re0 ( f e
φ ◦ φ) ≤ sup

e∈Etr

Re( f e
φ ◦ φ) + dφ(e0,Etr) + sup

e,e′∈Etr

[Re′ ( f e
φ ◦ φ) − Re( f e

φ ◦ φ)].

For the last term, using the same argument as in Theorem 1,

Re′ ( f e
φ ◦ φ) − Re( f e

φ ◦ φ) = δe,e′
φ + KLe,e′

φ + µe,e′
φ .

This completes the proof.
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B.2 Proof of Proposition 1

Suppose the support of the target supp(Xe0 ) can be disjoint from those of the sources ∪e∈Etr supp(Xe),
and let v(x) = 0 if x is from a source e ∈ Etr and v(x) = 1 if x is from the target e0. Suppose G is large
enough so that we have a φ ∈ G that maps x to the concatenation of φ∗(x) and v(x). Suppose f ∗ is
linear and let F be the set of linear functions, then we have an f with f (φ(x)) = f ∗(φ∗(x)) + 2v(x).
Then for x from any source, f (φ(x)) = f ∗(φ∗(x)), but for x from the target, f (φ(x)) = f ∗(φ∗(x)) + 2.
Suppose the target has an equal mass for the two class labels, then h ◦ φ has source risks 0 but a large
target risk 1/2. Furthermore, it is easy to see that in all sources, φ∗ satisfies ECI and the distributions
of φ∗(Xe) are the same.

B.3 Distribution Memorization under Milder Assumptions

Proposition 1 shows large hypothesis classes can lead to too large predictor adaptation gap, but
assuming the support of the target is disjoint with those of the sources. Here we show that this
assumption is not needed in general, but just for the simplicity of the presentation and illustration of
intuition.

Consider the following example. The input x lies on the real line. The conditional probability
of the label Y |X are the same for all domains: Y = 0 on [−2,−1] ∪ [1, 2], Y = 1 on [−1, 1], and
Pr[Y = 0|x] = Pr[Y = 1|x] = 1/2 for any x ∈ [2, 3]. The distributions of X are specified as follows.

1. The target domain e0 puts uniformly mass ε on the interval [−2, 0], mass ε on [0, 2], and
mass 1 − 2ε on [2, 3].

2. Source e1 puts uniformly mass 1 − 2ε on the interval [−2, 0], mass ε on [0, 2], and mass ε
on [2, 3].

3. Source e2 puts mass ε on the interval [−2, 0], mass 1 − 2ε on [0, 2], and mass ε on [2, 3].

Then φ(x) = |x| and the classifier f (φ(x)) = 1[φ(x) ≤ 1] have the optimal error and satisfy ECI on
the sources, but still has a large error (1 − 2ε)/2 in the target domain. This is reflected by a large
predictor adaptation gap. In this particular example, the gap is due to the covariate shift between the
sources and the target (similar to the example in Proposition 1).

Figure 6: Illustrating example of distribution memorization: e1 and e2 are the two source environments,
e0 is the target environment. Both φ1(x) = x1 and φ2(x) = x2 satisfy the source ECI and zero source
covariate shift. However, φ2 will lead to a large target error.

Consider another example, shown in Figure 6. It is a variant of Example 1. The input space
X = [−1, 1] × [−1, 1], G = {φ1, φ2} where φ1(x) = x1 and φ2(x) = x2, and F = {1λ(·)} (that is we
consider thresholding functions that 1λ(α) = 1 if α > λ, and 0 otherwise). The distributions are
specified as follows. Let ε > 0 be a sufficiently small constant.

1. The target e0 puts uniformly mass 1/2 − ε in the second and fourth quadrants, and mass ε in
the first and third quadrants. It has label 1 for the fourth quadrant and label 0 for the second
quadrant. In the first and third quadrant, it has label 1 for points in [−1,−1/2] × [−1,−1/2]
or [−1/2, 0] × [−1/2, 0] or [0, 1/2] × [0, 1/2] or [1/2, 1] × [1/2, 1], and has label 0 for the
other points.

2. Source e1 puts uniformly mass 1/2 − ε in the first and third quadrants, and mass ε in the
second and fourth quadrants. It has label 1 for the first quadrant and label 0 for the third
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quadrant. In the second and fourth quadrant, it has label 1 for points in [−1,−1/2] × [1/2, 1]
or [−1/2, 0] × [0, 1/2] or [0, 1/2] × [−1/2, 0] or [1/2, 1] × [−1,−1/2], and has label 0 for
the other points.

3. Source e2 puts uniformly mass 1/2 − ε in the first and third quadrants, and mass ε in the
second and fourth quadrants. It has label 1 for the first quadrant and label 0 for the third
quadrant. In the second and fourth quadrant, it has label 0 for points in [−1,−1/2] × [1/2, 1]
or [−1/2, 0] × [0, 1/2] or [0, 1/2] × [−1/2, 0] or [1/2, 1] × [−1,−1/2], and has label 1 for
the other points.

So both φ1 and φ2 lead to the optimal error and satisfy ECI in the sources. But φ1 and the correspond-
ing classifier 10(·) lead to a small error ε in the target, while φ2 and the corresponding classifier 10(·)
lead to a large error 1 − ε in the target. Again, this is reflected by a large predictor adaptation gap.
But in this particular example, the gap is due to the representation conditional label misalignment
between the sources and the target.

In summary, both the representation conditional label misalignment and the covariate shift between
the sources and the target can lead to a large predictor adaptation gap and consequently a large
generalization gap, even when we can make sure the representation conditional label misalignment
and the covariate shift among the sources are small. The precise relationship between the predictor
adaptation gap and the misalignment/covariate shift between the sources and the target is left for
future work.

C Relationship between ECI and IRM

Recall that the IRM approach proposed by [2] is to find ĥ, φ̂ by:

min
h∈F ,φ∈G

∑
e∈Etr

Re(h ◦ φ), (7)

subject to h ∈ arg min
h∈F

Re(h ◦ φ) for any e ∈ Etr. (8)

This is empirical risk minimization subject to simultaneous optimality of the predictor for all sources.
As pointed in [2], when the loss has the property that the minimizer is the Bayesian optimal predictor
and F is large enough to include that, ECI and simultaneous optimality are equivalent. Specifically
we consider the following definition:
Definition 13 (φ-Bayesian Optimality Property). Let φ : X 7→ R be a representation, ` : ∆K ×

[K] 7→ R+ be a loss function, where ∆K = {(p1, . . . , pK) | pi ≥ 0,
∑K

i=1 pi = 1} is the K-dimensional
probability simplex. Consider the following optimization problem:

minimize
w:R7→∆K

E[`( f (φ(X)),Y)] (9)

where the expectation is taken over X,Y . We say that ` has the Bayesian optimality property with
respect to φ, if the optimal solution f ∗ : R 7→ ∆K of (9), which maps a representation to a probability
vector, satisfies that

∀γ ∈ supp(Φ),∀y ∈ [K] : f ∗(γ)y = Pr[Y = y | Φ = γ]

Note that the simultaneous optimality is required for some h ∈ F , while ECI or invariant predictor
doesn’t require h to be from F . When the loss function has the Bayesian optimality property, φ
satisfying ECI is equivalent to φ eliciting an invariant predictor (see the discussion later). We prefer
to center our analysis around ECI rather than invariant predictor or simultaneous optimality for
convenience, while simultaneous optimality is very useful for enforcing ECI in training.

Here, we analyze IRM under the following assumptions:

(A1) The loss has the Bayesian optimality property.
(A2) F is sufficiently large to include the conditional probabilities g(r) = Pr(Ye|φ(Xe) = r) for

any φ ∈ G and any e ∈ Etr ∪ {e0}.

Under (A1)(A2), simultaneous optimality is equivalent to φ satisfying ECI.

It is worth noting many natural loss functions (e.g. squared loss, cross entropy) satisfies Bayesian
optimality property. Combining (A1) and (A2), we have the following proposition:
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Proposition 2. Let φ be a representation, ` be a loss function that satisfies the Bayesian optimality
property w.r.t. φ, and E be an environment family. Suppose that φ is conditionally invariant w.r.t.
E. Assuming (A2), then there is a universal optimal solution fφ ∈ F to the optimization problem
minh E[`(h(φ(Xe),Ye))] across all e ∈ E.

Proof. Define fφ as

[ fφ(r)]y := [ f e
φ (r)]y = Pr[Ye = y | φ(Xe) = r], y ∈ [K] for any e ∈ E that φ ∈ supp(φ(Xe))

We note that fφ is consistently defined because φ is conditionally invariant w.r.t. E. Clearly, fφ is
optimal because ` satisfies Bayesian optimality property. �

Now, given an environment family E, and (A1) (A2) satisfied, by Proposition 2, we can consider the
following objective:

minimize
φ

∑
e∈E

E[`( fφ(φ(Xe)),Ye)]

subject to ECI(φ,E)
(ERM-ECI)

Proposition 3. (ERM-ECI) is exactly the (IRM) objective defined as

minimize
h,φ

∑
e∈E

E[`(h(φ(Xe)),Ye)]

subject to (∀e ∈ E) h ∈ arg min
h

E[`(h(φ(Xe)),Ye)]
(IRM)

Proof. Because ` satisfies the conditional expectation property, therefore we know that for every
e ∈ E the optimal solution will output the optimal conditional probability. Therefore for (IRM),
the only possibility that there is an invariant optimal solution h across all environments, is that φ is
conditionally invariant w.r.t. E. However, then we know that the invariant optimal solution h in (IRM)
is nothing but the fφ. The proof is complete. �

Without (A1)(A2), simultaneous optimality may not impose ECI; see an example in the next subsec-
tion.

C.1 Example Showing the Difference of ECI and IRM

C.1.1 Review of the colored-MNIST Experiment

In the paper [2], an interesting experiment on colored-MNIST is performed. The experiment is
essentially as follows:

1. We start by considering a random variable G which encodes digits. Specifically, G is a
random variable on Rd of pixels. We abuse the notation to use G to denote the true digit its
pixels encode (e.g. G = 0 means a sample that encodes 0).

2. We then define a Bernoulli random variable X as

X =

{
0 if G = 0, 1, 2, 3, 4,
1 if G = 5, 6, 7, 8, 9

In other words, X = 0 if the digit encoded in G is less than 5, and 1 otherwise.

3. The true label Y is generated by flipping X with probability .25. That is,

Y =

{
X w.p. .75,
1 − X w.p. .25

In other words, the predictability6 of Y using X is Pr[X = Y] = .75.

6 We define the predictability of a binary random variable Y using another binary random variable X as
max{Pr[Y = X],Pr[Y = 1 − X]}.
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4. Then we create a color random variable Z, by flipping Y with probability q (define p = 1−q).
That is,

Z =

{
Y w.p. p,
1 − Y w.p. q

That is, the predictability of Y using Z is p if p > 1/2, and q if p ≤ 1/2.

5. Finally, after the color Z is sampled, we create a new pixel random variable G̃, by coloring
the pixels of the digit in G using color Z (red if Z = 0 and green if Z = 1). Clearly, the
causal structure is

G −−−−−−−−−−−−−−−−−−→ G̃
↓ ↑

X −−−−−−−→ Y −−−−−−−→ Z

(Causal Structure)

Correlation between Y and Z is variant and thus is spurious. Note that both x and z can be
recovered from g̃.

6. The task is to train a classifier to predict Y from G̃ (that is a model G̃ 7→ Y). The experiment
in [2] defines three environments: (e1) where q = .1, which generates Ze1 . Note that
Pr[Y = Ze1 ] = .9 > .75 = Pr[X = Y]. (e2) where q = .2, which generates Ze2 . Note
that Pr[Y = Ze2 ] = .8 > .75 = Pr[X = Y]. (e3) (test environment): where q = .9, which
generates Ze3 . Note that now Pr[Y = Ze3 ] = .1 � .75 = Pr[X = Y]. That is, while in training
environments Z is highly predictive, in the test environment it is poorly performing (and
instead it is 1 − Z that is highly predictive).

IRM paper uses e1 and e2 for training. It is straightfoward now to instantiate both (IRM) and (IRMv1)
objectives with the above setting. Interestingly, with (IRMv1), [2] found that they can learn to use X,
but not Z. In a nutshell, they claim that, even with the following two assumptions:

1. The correlation between Y and Z varies over training environments.

2. In every training environment Z is more predictive than X in predicting Y .

IRM can still learn not to use correlations that are not invariant.

C.1.2 Example where IRM Does Not Impose ECI

We now prove that if we use the 0-1 loss (which does not have the Bayesian optimality property),
then the optimal solutions to (IRM) in color-MNIST do not satisfy ECI and should learn the spurious
correlation Z (i.e., the color).

To start with, we consider 0-1 loss, that is, given hypothesis h that maps g ∼ G̃ to {0, 1},

`(g, y; h) = 1[h(g) , y] =

{
1 h(g) , y,
0 otherwise.

and therefore Re(h) is defined to be
∑

(g,y)∼G̃e `(g, y; h).

Our construction has two steps: First, we construct one optimal solution (Φ∗,w∗) to (IRM), but
which learns the spurious correlation Z. Second, we prove that any optimal solution should learn the
spurious correlation Z.

Constructing an optimal (Φ∗,w∗) to (IRM). Now, we construct representation Φ∗ and classifier w∗:

• We let Φ∗ be the representation that maps a colored image g ∼ G̃ to a binary vector in {0, 1}2:

Φ∗(G̃) =

[
X
Z

]
That is, from G̃, Φ∗ optimally reconstructs the digit concept X and color concept Z.
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• We construct classifier w∗ as

w∗ =

[
0
1

]
In other words, (w∗)TΦ∗(G̃) = Z, which simply outputs the color concept.

We have the following proposition,
Proposition 4. For 0-1 loss, (Φ∗,w∗) is an optimal solution to (IRM). Specifically, outputting color
Z using w∗ is optimal in e1 and e2 respectively, and achieves minimal empirical risk combining
environments e1 and e2.

Proof. Consider the Bayesian optimal classifier c∗ given X,Z. That is

c∗(x, z) =

{
1 if Pr[Y = 1|x, z] > 1/2
0 otherwise.

For any predictor f : G̃ 7→ {0, 1}, we show that Pr[Y , f (G̃)] ≥ Pr[Y , c∗(X,Z)]. That is c∗(X,Z)
achieves the optimal error among all predictors over G̃. To see this, note that from (Causal Structure),
we have that Y y G̃ | (X,Z). Thus Y y f (G̃) | (X,Z). Therefore by the law of total expectation

Pr[Y , f (G̃)] = E
X,Z

[E[1{Y , f (G̃)} | X,Z]]

=
∑
x,z

p(x, z) ·
(
p(Y = 1, f (G̃) = 0 | x, z) + p(Y = 0, f (G̃) = 1) | x, z)

)
=

∑
x,z

p(x, z) ·
(
p(Y = 1|x, z)p( f (G̃) = 0|x, z) + p(Y = 0|x, z)p( f (G̃) = 1|x, z))

)
≥

∑
x,z

p(x, z) ·min
{

p(Y = 1|x, z), p(Y = 0|x, z)
}

=
∑
x,z

p(x, z) · Pr[Y , c∗(x, z)]

= Pr[Y , c∗(X,Z)]

Clearly, Φ∗(G̃) = (X,Z). Next we show that c∗ = w∗. For each environment we can compute the
Bayesian optimal predictor Pr[Y = y | X = x,Z = z], for x, y, z ∈ {0, 1}. We have that,

e1 y = 0 y = 1
x = 0, z = 0 27

28
1
28

x = 0, z = 1 1
4

3
4

x = 1, z = 0 3
4

1
4

x = 1, z = 1 1
28

27
28

e2 y = 0 y = 1
x = 0, z = 0 12

13
1

13

x = 0, z = 1 3
7

4
7

x = 1, z = 0 4
7

3
7

x = 1, z = 1 1
13

12
13

For each row, we highlight (bold) the cell which Bayesian optimal predictor should output. One can
see that for either environment, the Bayesian optimal predictor is simply to output z. This shows that:

• z is the optimal predictor for e1 and e2, respectively, and,

• The Bayesian optimal predictor for e1 and e2 together is also simply z.

We note that w∗ ◦ Φ∗ gives the optimal predictor z, and also that w∗ is the optimal hypothesis for
Φ∗(G̃e1 ) and Φ∗(G̃e2 ), respectively. Therefore (w∗,Φ∗) is an optimal solution to (IRM). �

From “an” optimal solution to “any” optimal solution. We have the following:

Proposition 5. For 0-1 loss, and any optimal solution Φ,w to (IRM), w◦Φ must be Z (i.e., the color).
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Proof. Consider any optimal solution Φ and w to (IRM). It must satsify that its empirical loss across
all environments must be upper bounded by that of Φ∗ and w∗. That is,

Re1 (w ◦ Φ) + Re2 (w ◦ Φ) ≤ Re1 (w∗ ◦ Φ∗) + Re2 (w∗ ◦ Φ∗).

However w∗ ◦ Φ∗ is the Bayesian optimal predictor Z. This means that w ◦ Φ must also be Z. The
proof is complete. �

Combining Propositions 4 and 5 it shows that (IRM) cannot impose ECI and learn invariant correla-
tions.

D Experimental Details for IRM under Representation Covariate Shift

There are two training environments e1, e2 and one testing environment e0. The data is generated
with two control parameter p, n as follows: We first we assign a preliminary label ỹ = 0 for digit
0 − 4, and ỹ = 1 for digit 5 − 9 for each data point in MNIST. Then to create e1, e2, we randomly
partition the 50000 MNIST training samples into two sets S 1 and S 2. In e1, we sample n points
with replacement from set S 1 to obtain data from 0-4 with probability p

1+p and data from 5-9 with
probability 1

1+p ; in e2, we sample n points with replacement from set S 2 to obtain data from 0-4 with
probability 1

1+p and data from 5-9 with probability p
1+p . Finally, we create final label (true label) for

data in all environments, y, by flipping ỹ with probability 0.25. Finally, we create the color variable

for each sample c by flipping y with probability qe, where qe =


0.2 e = e1

0.1 e = e2

0.9 e = e0

.

The result is given in Table 1. We can observe that as n increases, the train accuracy-test accuracy gap
shrinks. As p decreases, the training accuracy increases steadily. The test accuracy drops significantly
in particular when p goes from 0.6 to 0.3. The reason, we think, is that the IRM is no longer able to
learn a useful representation from the two training environments with completely misaligned feature
representations.

E More Related Work

Representation learning has become a popular approach for various applications, and learning
invariant representations across multiple domains has been a popular method for domain adaptation in
recent years. A classic approach for analyzing domain adaption is based onH-divergence [15, 7, 4].
That theoretical framework is the basis for a line of methods that uses adversarial training with neural
networks to learn representations that are indistinguishable between source and target domain, in
particular domain adversarial neural network (DANN) [1, 12] and related techniques [21, 30]. Some
other approach used different divergence notions, such as MMD [18, 17], Wasserstein distance [8, 27],
and Rényi divergence [19]. Another line of research for domain adaptation is based on causal
approaches that typically assume shared generative distributions, e.g., [28, 13, 3]. This work instead
focuses on discriminative representation learning and does not make generative assumptions.

On the other hand, theH-divergence bound is for general learning rather than representation learning,
and thus falls short in explaining some failure cases. To this end, our bounds are finer-grained
than the classic bounds for domain adaptation based onH-divergence, e.g., that by [4]. For single
source, a similar bound as Theorem 1 can be derived from the classicH-divergence based bound, by
bounding theH-divergence by the label divergence and covariate shift. On the other hand, the bound
in Theorem 1 is tighter (it is an equality!) and the analysis is more intuitive. For multiple sources,
we can also derive a multi-sourceH-divergence based bound. Our multi-source bound can also be
viewed as decomposing theH-divergence into finer-grained quantities. See Section F in the appendix
for the details.

Invariant Risk Minimization (IRM) [2] proposed to learn representations that result in the same
optimal prediction across domains. We noted that this corresponds to enforcing one factor in our risk
decomposition, which also reveals conditions for success and suggests potential improvements to
IRM.
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p n Training accuracy
(std dev.)

Test accuracy
(std dev.)

1 25000 0.7141 (0.0095) 0.6489 (0.0163)
1 50000 0.6978 (0.0057) 0.6955 (0.0079)
1 100000 0.6995 (0.0057) 0.6986 (0.0099)

0.9 25000 0.7193 (0.0126) 0.6578 (0.0158)
0.9 50000 0.7059 (0.0056) 0.6951 (0.0136)
0.9 100000 0.7033 (0.0053) 0.7087 (0.0092)
0.8 25000 0.7152 (0.0072) 0.6823 (0.0121)
0.8 50000 0.7107 (0.0053) 0.6986 (0.0071)
0.8 100000 0.7067 (0.0054) 0.7025 (0.0092)
0.7 25000 0.7347 (0.0122) 0.6437 (0.0316)
0.7 50000 0.7254 (0.0055) 0.6724 (0.0124)
0.7 100000 0.7198 (0.0032) 0.6797 (0.0077)
0.6 25000 0.7512 (0.0115) 0.6126 (0.038)
0.6 50000 0.7419 (0.0047) 0.6332 (0.013)
0.6 100000 0.7343 (0.0056) 0.6388 (0.0161)
0.5 25000 0.7767 (0.013) 0.4915 (0.0583)
0.5 50000 0.7551 (0.0067) 0.5885 (0.0271)
0.5 100000 0.7519 (0.0084) 0.5981 (0.039)
0.4 25000 0.7916 (0.0241) 0.4089 (0.0991)
0.4 50000 0.7828 (0.0152) 0.4441 (0.0715)
0.4 100000 0.7739 (0.0073) 0.5053 (0.0392)
0.3 25000 0.8356 (0.0065) 0.2457 (0.0257)
0.3 50000 0.8261 (0.0152) 0.2756 (0.0497)
0.3 100000 0.8277 (0.0078) 0.2668 (0.0286)
0.2 25000 0.8463 (0.0021) 0.1879 (0.0095)
0.2 50000 0.8444 (0.001) 0.1801 (0.0067)
0.2 100000 0.8425 (0.001) 0.1853 (0.0054)
0.1 25000 0.8465 (0.0017) 0.1901 (0.0109)
0.1 50000 0.8459 (0.0009) 0.1717 (0.0127)
0.1 100000 0.8455 (0.0007) 0.1665 (0.0082)

Table 1: Complete results of IRM under covariate shift. The covariate shift is created by manipulation
of the data distribution described in the text in Section D.

F Relations between Our Bounds and Divergence-based Bounds

F.1 Review of the Divergence-based Bound for Single-Source Domain Adaptation

The seminal work by [4] considered the setting of single-source domain adaptation without repre-
sentation learning, i.e., only consideringH but not F or G. It gives a bound on the risk in the target
domain, based on the notion ofH-divergence. We review the divergence and the bound below.

By learning on the source, one cannot hope the learned hypothesis to generalize to arbitrary target.
Therefore, some criterion is needed to measure how close the target is to the source. A naı̈ve
measurement is the L1 distance. However, [4] pointed out the L1 distance cannot be accurately
estimated from finite samples of arbitrary distributions. Furthermore, it is a supremum over all
measurable subsets while we are only interested in the risk of hypothesis from a class of finite
complexity. They thus proposed to use the H-divergence instead. The original bound is derived
for the setting where the label y ∈ [0, 1], the output of the hypothesis is in {0, 1}, and the loss is
`(y, y′) = |y − y′|. Here we gives a variant of the divergence and the original bound for general loss,
which is convenient for the later discussion on comparison to our bounds.
Definition 14. Denote the difference between the risks of two hypotheses h, h′ as

νe(h, h′) = |Re(h) − Re(h′)|. (10)

The generalizedH∆H-divergence between two distributions e, e′ is

dH∆H (e, e′) = 2 sup
h,h′∈H

∣∣∣νe(h, h′) − νe′ (h, h′)
∣∣∣ . (11)
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The generalized divergence upper bounds the change of the hypothesis risk difference due to dis-
tribution shifts. If it is small, then for any h, h′ ∈ H where h has a smaller risk than h′ in e, we
know that h will also have a smaller (or not too larger) risk than h′ in e′. That is, if the divergence is
small, then the ranking of the hypotheses w.r.t. the risk is roughly the same in both distributions. This
rank-preserving property makes sure that a good hypothesis learned in one domain will also be good
for another.
Theorem 5. Suppose the loss is non-negative. For any h ∈ H ,

Rt(h) ≤ inf
h∗∈H

{
Rt(h∗) + Rs(h∗)

}
+ Rs(h) + dH∆H (s, t). (12)

Proof. By definition of dH∆H (s, t) and non-negativity of the loss,

dH∆H (s, t) (13)
≥ sup

h∗∈H
{|νt(h, h∗) − νs(h, h∗)|} (14)

≥ sup
h∗∈H

{
Rt(h) − Rt(h∗) − Rs(h) − Rs(h∗)

}
. (15)

Rearranging the terms completes the proof. �

F.2 Comparing Our Single-Source Bound to the Divergence-based Bound

We can derive a bound by first applying the divergence-based bound Theorem 5 on the hypothesis
classH = { f s

φ ◦ φ, f t
φ ◦ φ}, and then bounding the divergence with our notions KLs,t

φ ,KLt,s
φ , δ

s,t
φ , and

µs,t
φ .

Proposition 6.
Rt( f s

φ ◦ φ) ≤ 3Rs( f s
φ ◦ φ) + max{KLs,t

φ ,KLt,s
φ } + δs,t

φ + µs,t
φ .

Proof. Recall KLt,s
φ = Rs( f t

φ ◦ φ) − Rs( f s
φ ◦ φ) and KLs,t

φ = Rt( f s
φ ◦ φ) − Rt( f t

φ ◦ φ). Applying the
divergence-based bound Theorem 5 on the hypothesis classH = { f s

φ ◦ φ, f t
φ ◦ φ} gives:

Rt( f s
φ ◦ φ) ≤ Rs( f s

φ ◦ φ) + min
h∈H
{Rs(h) + Rt(h)} + |KLt,s

φ − KLs,t
φ |.

If KLt,s
φ ≥ KLs,t

φ , then

min
h∈H
{Rs(h) + Rt(h)} + |KLt,s

φ − KLs,t
φ | ≤ KLt,s

φ − KLs,t
φ + Rs( f s

φ ◦ φ) + Rt( f s
φ ◦ φ)

≤ KLt,s
φ + Rs( f s

φ ◦ φ) + Rt( f t
φ ◦ φ).

If KLt,s
φ ≤ KLs,t

φ , then

min
h∈H
{Rs(h) + Rt(h)} + |KLt,s

φ − KLs,t
φ | ≤ −KLt,s

φ + KLs,t
φ + Rs( f t

φ ◦ φ) + Rt( f t
φ ◦ φ)

≤ KLs,t
φ + Rs( f s

φ ◦ φ) + Rt( f t
φ ◦ φ).

Then the statement follows from Rt( f t
φ ◦ φ) − Rs( f s

φ ◦ φ) = δs,t
φ + µs,t

φ . �

Our bound in Theorem 1 is an equality and thus tighter than this, and the proof is simpler and more
intuitive. The above proposition also shows that our bound gives a finer-grained analysis than the
divergence-based bound Theorem 5.

It is also instructive to apply Theorem 5 to explain Example 1. If we apply it toH = F ◦ G, then we
can see that the first two terms infh∗∈H

{
Rt(h∗) + Rs(h∗)

}
and Rs(h) can be small. However, dH∆H (s, t)

will be large. Therefore, the bound can detect that the learned model may not generalize to the
target domain, but it doesn’t point out what leads to the problem, while our bound points out that the
representation conditional label misalignment does. Furthermore, the subtle issue in Example 1 arises
when one applies Theorem 5 on the representation level instead of the input level. More precisely, if
we apply it onH1 = F ◦ {φ1}, we have

Rt( f ◦ φ1) ≤ inf
f ∗∈F

{
Rt( f ∗ ◦ φ1) + Rs( f ∗ ◦ φ1)

}
+ Rs( f ◦ φ1) + dH1∆H1 (s, t). (16)
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Similarly, if we apply it onH2 = F ◦ {φ2}, we have

Rt( f ◦ φ2) ≤ inf
f ∗∈F

{
Rt( f ∗ ◦ φ2) + Rs( f ∗ ◦ φ2)

}
+ Rs( f ◦ φ2) + dH2∆H2 (s, t). (17)

The last two terms can be made small, but the generalization gap gets hidden in the first term. In
particular, both dH1∆H1 (s, t) and dH2∆H2 (s, t) are 0, but dH∆H (s, t) can be large. Note that though
H = H1 ∪ H2, dH∆H (s, t) is much larger than the maximum of dH1∆H1 (s, t) and dH2∆H2 (s, t). The
difference between dH∆H (s, t) and max{dH1∆H1 (s, t), dH2∆H2 (s, t)} gets hidden in the first term, and
is the root for the subtle issue in Example 1. In summary, using the bound on the input level is the
correct way to apply it, which can detect there is an issue for generalization but still doesn’t point out
where the issue comes from.

F.3 Generalizing the Divergence-based Bound to Multi-Source Domain Adaptation

Here we show one can generalize the divergence-based bound for the case with a single source s and
target t to the case with multiple sources Etr and a target e0.

Based on the divergence, we introduce the key notion for the analysis:
Definition 15. TheH-misalignment from e0 to Etr is

dH (e0;Etr) = inf
e∈Etr

{
1
2

dH∆H (e0, e)
}

= inf
e∈Etr

sup
h,h′∈H

∣∣∣νe0 (h, h′) − νe(h, h′)
∣∣∣ . (18)

The notion measures how aligned e0 is to Etr w.r.t. risk ranking. Intuitively, as long as there exists
one e ∈ Etr whose ranking of the hypotheses by their risks is similar to that of e0, then e0 is aligned to
Etr. To emphasize the difference from typical distribution distances, we use the term misalignment
instead.

Then we can generalize Theorem 5 as follows.
Theorem 6. Suppose the loss is non-negative. For any e0 and any h ∈ H ,

Re0 (h) ≤ inf
h∗∈H

{
Re0 (h∗) + sup

e∈Etr

Re(h∗)
}

+ sup
e∈Etr

Re(h) + dH (e0;Etr). (19)

Proof. By definition of dH (e0;Etr) and non-negativity of the loss,

dH (e0;Etr) (20)
≥ inf

e∈Etr
sup
h∗∈H

{
|νe0 (h, h∗) − νe(h, h∗)|

}
(21)

≥ inf
e∈Etr

sup
h∗∈H
{Re0 (h) − Re0 (h∗) − Re(h) − Re(h∗)} . (22)

Applying the maxmin inequality and then rearranging the terms completes the proof. �

Similar to the single-source case, the bound in Theorem 6 uses infh∗∈H {Re0 (h∗) + supe∈Etr
Re(h∗)

}
and dH (e0;Etr). While our bound in Theorem 2 uses our notions of representation conditional label
divergence, representation covariate shift, and prediction adaptation gap. The terms in Theorem 6
can also be bounded using our notions using a similar argument as in Proposition 6. Therefore,
compared to the divergence-based bound, our bound provides a finer-grained analysis in the setting
of representation learning.
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